Pfeffer C, Larsen S, Music J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous micro organism transport electrons over centimetre distances. Nature. 2012;491:218–21.
Article
CAS
Google Scholar
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogeinternetically numerous electroactive microorganisms. Nat Rev Microbiol. 2022;20:5–19.
Article
CAS
Google Scholar
Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Prolonged-distance electron transport in particular person, dwelling cable micro organism. Proc Natl Acad Sci USA. 2018;115:5786–91.
Article
CAS
Google Scholar
Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T, Kjeldsen KU, et al. A taxonomic framework for cable micro organism and proposal of the candidate genperiod Electrothrix and Electronema. Syst Appl Microbiol. 2016;39:297–306.
Article
Google Scholar
Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Pure prevalence of microbial sulphur oxidation by long-differ electron transport Inside the seafloor. ISME J. 2014;8:1843–54.
Article
CAS
Google Scholar
Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable micro organism in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.
Article
CAS
Google Scholar
Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche EM, et al. Prolonged-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.
Article
CAS
Google Scholar
Scholz VV, Müller H, Koren K, Nielsen LP, Meckenstock RU. The rhizosphere of aquatic crops is a habitat for cable micro organism. FEMS Microbiol Ecol. 2019;95:fiz062.
Article
CAS
Google Scholar
Scholz VV, Martin BC, Meyer R, Schramm A, Fraser MW, Nielsen LP, et al. Cable micro organism at oxygen-releasing roots of aquatic crops: a widespstudy and numerous plant–microbe affiliation. N Phytol. 2021;232:2138–51.
Article
CAS
Google Scholar
Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the salty divide: phylogeinternetic particularity of transitions between marine and freshwater methods. mSystems. 2018;3:e00232–18.
Article
CAS
Google Scholar
Cabello-Yeves PJ, Rodriguez-Valperiod F. Marine-freshwater prokaryotic transitions require in depth modifications Inside The anticipated proteome. Microbiome. 2019;7:117.
Article
Google Scholar
Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable micro organism. Proc Natl Acad Sci USA. 2019;116:19116–25.
Article
CAS
Google Scholar
Müller H, Marozava S, Probst AJ, Meckenstock RU. Groundwater cable micro organism protect power by sulfur disproportionation. ISME J. 2020;14:623–34.
Article
Google Scholar
Boschker HTS, Put together dinner PLM, Polerecky L, Eachambadi RT, Lozano H, Hidalgo-Martinez S, et al. Environment nice long-differ conduction in cable micro organism by way of nickel protein wires. Nat Commun. 2021;12:3996.
Article
CAS
Google Scholar
Thorup C, Petro C, Bøggild A, Ebsen TS, Brokjær S, Nielsen LP, et al. The biggest Method to develop your cable micro organism: institution of a safe single-strain tradition in sediment and proposal of Candidatus Electronema aureum GS. Syst Appl Microbiol. 2021;44:126236.
Article
CAS
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving micro organisml genome assemblies from brief and long sequencing studys. PLoS Comput Biol. 2017;13:e1005595.
Article
Google Scholar
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol. 2019;37:953–61.
Article
CAS
Google Scholar
Koren S, Phillippy AM. One chromosome, one contig: full microbial genomes from long-study sequencing and meeting. Curr Opin Microbiol. 2015;23:110–20.
Article
CAS
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Restoration of shut toly 8,000 metagenome-assembled genomes considerably expands the tree of life. Nat Microbiol. 2017;2:1533–42.
Article
CAS
Google Scholar
Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: An automated system for the recupperiodtey of inhabitants genomes from associated metagenomes. PeerJ. 2014;2:e603.
Article
Google Scholar
Vasudevan K, Devanga Ragupathi NK, Jacob JJ, Veperiodraghavan B. Extremely right-single chromosomal full genomes using IonTorrent and MinION sequencing of medical pathogens. Genomics. 2020;112:545–51.
Article
CAS
Google Scholar
Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, et al. ProDeGe: a computational protocol for absolutely automated decontamination of genomes. ISME J. 2016;10:269–72.
Article
CAS
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing The regular of microbial genomes recupperiodteed from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Article
CAS
Google Scholar
Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of The worldwide human gut microbiome. Nature. 2019;568:505–10.
Article
CAS
Google Scholar
Moss EL, Maghini DG, Bhatt AS. Complete, shutd micro organisml genomes from microbiomes using nanopore sequencing. Nat Biotechnol. 2020;38:1–7.
Article
Google Scholar
Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, Tolstoganov I, et al. Producing lineage-resolved, full metagenome-assembled genomes from complicated microbial communities. Nat Biotechnol. 2022;40:711–9.
Article
CAS
Google Scholar
Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA, Wollenberg RD, et al. Oxford Nanopore R10.4 long-study sequencing permits the period of shut to-fulld micro organisml genomes from pure traditions and metagenomes with out brief-study or reference sprucing. Nat Strategies. 2022;19:823–6.
Article
CAS
Google Scholar
Overholt WA, Hölzer M, Geesink P, Diezel C, Marz M, Küsel K. Inclusion of Oxford Nanopore long studys improves all microbial and viral metagenome-assembled genomes from A posh aquifer system. Environ Microbiol. 2020;22:4000–13.
Article
CAS
Google Scholar
De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, et al. Comparability of long-study sequencing utilized sciences Inside the hybrid meeting of complicated micro organisml genomes. Microb Genom. 2019;5:e000294.
Haghshenas E, Asghari H, Stoye J, Chauve C, Hach F. HASLR: quick hybrid meeting of long studys. iScience. 2020;23:101389.
Article
CAS
Google Scholar
Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting construction to carry out with the recupperiodtey of over 1000 extreme-extreme quality metagenome-assembled genomes from activated sludge using long-study sequencing. Nat Commun. 2021;12:2009.
Article
CAS
Google Scholar
Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Prolonged-study metagenomics retrieves full single-contig micro organisml genomes from canine feces. BMC Genomics. 2021;22:330.
Article
Google Scholar
Liu L, Wang Y, Che Y, Chen Y, Xia Y, Luo R, et al. High-extreme quality micro organisml genomes of a partial-nitritation/anammox system by an itperiodtive hybrid meeting method. Microbiome. 2020;8:155.
Article
CAS
Google Scholar
Geelhoed JS, Thorup CA, Bjerg JJ, Schreiber L, Ochman H, Nielsen LP, et al. Pangenome evaluation of cable micro organism reveals the probably geinternetic basis Of huge sized micro organism in Candidatus Electrothrix gigas sp. nov [manuscript in preparation]. College of Antwerp and Aarhus College; 2022 [cited 2023 Jan 23].
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome variety revealed by over 150,000 genomes from metagenomes spanning age, geography, and way of life. Cell 2019;176:649–662.e20.
Article
CAS
Google Scholar
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. An complete area-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.
Article
CAS
Google Scholar
Dam AS, Marshall IPG, Risgaard-Petersen N, Burdorf LDW, Marzocchi U. Influence of salinity on cable micro organism species complace And selection. Environ Microbiol. 2021;23:2605–16.
Article
CAS
Google Scholar
Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, et al. A proposed genus boundary for the prokaryotes based mostly on genomic insights. J Bacteriol. 2014;196:2210–5.
Article
Google Scholar
Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for micro organism and archaea based mostly on A conventional genome associatedness index. mBio 2020;11:e02475–19.
Article
CAS
Google Scholar
Oren A. Microbial life at extreme salt concentrations: phylogeinternetic and metabolic variety. Saline Syst. 2008;4:2.
Article
Google Scholar
Stal LJ, Cretoiu MS (eds). The marine microbiome. 1st ed. Springer Cham, Yersseke, 2016.
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three areas of life to extreme salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.
Article
CAS
Google Scholar
Sannikov A. Marine sediments: intperiodction companions of cable micro organism revealed by way of metagenomics [grasp’s thesis On The internet]. College of Padua; 2021 [cited 2023 Jan 23]. Out there from: http://hdl.deal with.internet/20.500.12608/34057.
Fang Y, Liu J, Yang J, Wu G, Hua Z, Dong H, et al. Complaceal and metabolic responses of autotrophic microbial group to salinity in lacustrine environments. mSystems. 2022;7:e0033522.
Article
Google Scholar
Herz K, Vimont S, Padan E, Berche P. Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholperiode in a saline environment. J Bacteriol. 2003;185:1236–44.
Article
CAS
Google Scholar
Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T. Overexpression of a Na+/H+ antiporter confers salt tolperiodnce on a freshwater cyanobacterium, making it In a place to progress in sea water. Proc Natl Acad Sci USA. 2002;99:4109–14.
Article
CAS
Google Scholar
Meng L, Meng F, Zhang R, Zhang Z, Dong P, Photo voltaic K, et al. Characterization of a novel two-factor Na + (Li + , K + )/H + antiporter from Halomonas zhaodongensis. Sci Rep. 2017;7:4221.
Article
Google Scholar
Wei Y, Liu J, Ma Y, Krulwich TA. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-delicate Escherichia coli mutant. Microbiology. 2007;153:2168–79.
Article
CAS
Google Scholar
Marzocchi U, Thorup C, Dam AS, Schramm A, Risgaard-Petersen N. Dissimilatory nitrate discount by a freshwater cable bacterium. ISME J. 2022;16:50–7.
Article
CAS
Google Scholar
Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, et al. Reduction of nitrate in Shewanella oneidensis Relies upon upon atypical NAP and NRF methods with NapB as a most properly-appreciated electron transport protein from CymA to NapA. ISME J. 2009;3:966–76.
Article
CAS
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. quickp: an extremely-quick all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–90.
Article
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KEY. 2017. Ending micro organisml genome assemblies with a quantity ofx MinION sequencing. Micro Genom. 2017;3:e000132.
Google Scholar
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-study sequencing knowledge. Bioinformatics. 2018;34:2666–9.
Article
Google Scholar
Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-study metagenome meeting using repeat graphs. Nat Strategies. 2020;17:1103–10.
Article
CAS
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and right de novo genome meeting from long unrighted studys. Genome Res. 2017;27:737–46.
Article
CAS
Google Scholar
Li H. Minimap and miniasm: quick mapping and de novo meeting for noisy long sequences. Bioinformatics. 2016;32:2103–10.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMmodels. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for strong and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
Article
Google Scholar
Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, et al. Improved metagenome binning and meeting using deep variational autoencoders. Nat Biotechnol. 2021;39:555–60.
Article
CAS
Google Scholar
Wu YW, Simmons BA, Singer SW. MaxBin 2.0: An automated binning algorithm to recupperiodte genomes from a quantity of metagenomic knowledgemodels. Bioinformatics. 2016;32:605–7.
Article
CAS
Google Scholar
Wang Z, Huang P, You R, Photo voltaic F, Zhu S. MetaBinner: a extreme-efficiency and stand-alone ensemble binning method to recupperiodte particular person genomes from complicated microbial communities. Genome Biol. 2023;24:1.
Article
Google Scholar
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Restoration of genomes from metagenomes by way of a dereplication, aggregation and scoring technique. Nat Microbiol. 2018;3:836–43.
Article
CAS
Google Scholar
Chan PP, Lowe TM. tRNAscan-SE: Wanting for tRNA genes in genomic sequences. Strategies Mol Biol. 2019;1962:1–14.
Article
CAS
Google Scholar
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimal Particulars A few single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of micro organism and archaea. Nat Biotechnol. 2017;35:725–31.
Article
CAS
Google Scholar
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a systemkit To categorise genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.
CAS
Google Scholar
Steinegger M, Söding J. MMseqs2 permits delicate protein sequence Wanting for the evaluation of huge knowledge models. Nat Biotechnol. 2017;35:1026–8.
Article
CAS
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence knowledgebase of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5.
Article
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene knowledgebase enterprise: improved knowledge processing and internet-based mostly models. Nucleic Acids Res. 2013;41:D590–596.
Article
CAS
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A quick and efficient stochastic algorithm for estimating most-probability phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
Google Scholar
Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for meals safety: gentle-rotting enteromicro organisml plant pathogens. Anal Strategies. 2015;8:12–24.
Article
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: extreme quality evaluation system for genome assemblies. Bioinformatics. 2013;29:1072–5.
Article
CAS
Google Scholar
Xie Z, Tang H. ISEScan: automated identification of insertion sequence parts in prokaryotic genomes. Bioinformatics. 2017;33:3340–7.
Article
CAS
Google Scholar
Seemann T. Prokka: speedy prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: a a quantity of sequence alignment method with lowered time and space complicatedity. BMC Bioinform. 2004;5:113.
Article
Google Scholar
Website AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: speedy huge-scale prokaryote pan genome evaluation. Bioinformatics. 2015;31:3691–3.
Article
CAS
Google Scholar
Valleinternet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an constructed-in platform for the annotation and exploration of microbial gene carry outs by way of genomic, pangenomic and metabolic comparative evaluation. Nucleic Acids Res. 2020;48:D579–89.
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar null, et al. ARB: a gentleware program environment for sequence knowledge. Nucleic Acids Res. 2004;32:1363–71.
Article
CAS
Google Scholar
Yilmaz LS, Parnerkar S, Noguperiod DR. mathFISH, An interinternet system that makes use of thermodynamics-based mostly mathematical fashions for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22.
Article
CAS
Google Scholar
Daims, H, Stoecker, K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. In: Molecular Microbial Ecology. Taylor & Francis; 2005. p. 213–39.
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-focused oligonucleotide probes with circulate cytometry for analyzing mixed microbial inhabitantss. Appl Environ Microbiol. 1990;56:1919–25.
Article
CAS
Google Scholar
Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The area-particular probe EUB338 is insufficient for the detection of all Bacteria: enchancment and evaluation of a extra full probe set. Syst Appl Microbiol. 1999;22:434–44.
Article
CAS
Google Scholar
Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-focused oligonucleotide probes for circulate cytometric identification of microorganisms. Cytometry. 1993;14:136–43.
Article
CAS
Google Scholar
Fernando EY, McIlroy SJ, Nierychlo M, Herbst FA, Petriglieri F, Schmid MC, et al. Resolving The particular person contribution of key microbial inhabitantss to enhanced organic phosphorus perioddicating with Raman-FISH. ISME J. 2019;13:1933–46.
Article
CAS
Google Scholar